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Abstract. Dynamic programming is applicable to any situation where items from several groups must be
combined to form an entity, such as a composite investment or a transportation route connecting several districts.
The most desirable entity is constructed in stages by forming sub-entities of progressively larger size. At each
stage of the development, the sub-entities that are candidates for inclusion in the most desirable entity are
retained, and all other sub-entities are discarded. In deterministic dynamic programming, a specification of the
current state and current decision is enough to tell us with certainty the new state and costs during the current
stage. In many practical problems, these factors may not be known with certainty, even if the current state and
decision are known. In this paper, the dynamic programming is applied to the situation where each investment in
the set has the following characteristics: the amount to be invested has several possible values, and the rate of
return varies with the amount invested. Each sum that may be invested represents a distinct level of investment,
and the investment therefore has multiple levels. A fuzzy present worth based dynamic programming approach is
used. A numeric example for a multilevel investment with fuzzy geometric cash flows is given. A computer
software named FUZDYN is developed for various problems such as alternatives having different lives, different
uniform cash flows, and different ranking methods.

Keywords: fuzzy sets, dynamic programming, investment, fuzzy present worth

1. Introduction

Dynamic programming is a technique that can be used to solve many optimization
problems. In most applications, dynamic programming obtains solutions by working
backward from the end of a problem toward the beginning, thus breaking up a large,
unwieldy problem into a series of smaller, more tractable problems. The characteristics of
dynamic programming applications are (Winston (1994))

¢ The problem can be divided into stages with a decision required at each stage.

¢ Each stage has a number of states associated with it.

¢ The decision chosen at any stage describes how the state at the current stage is
transformed into the state at the next stage.

¢ Given the current state, the optimal decision for each of the remaining stages must not
depend on previously reached states or previously chosen decisions.
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102 KAHRAMAN, RUAN AND BOZDAG

¢ If the states for the problem have been classified into one of 7 stages, there must be a
recursion that relates the cost or reward earned during stages ¢, ¢t + 1, ..., T to the cost
or reward eamed from stages t + 1, ¢+ 2,..., T

The dynamic programming recursion can often be written in the following form. For a
minimum problem with fixed output:

£ (i) = min{(cost during stage t) + f;11(new state at stage t + 1)} (1)
and for a maximum problem with fixed input, it is

£, (i) = max{(benefits during stage t) + fi11(new state at stage t+ 1)} (2)
or for a maximum problem neither input nor output fixed, it is

£, (1) = max{(‘benefits — costs’ during stage t) + f,,1(new state at stage t + 1)}

(3)

where the minimum in Eq. (1) or maximum in Eq. (2) and Eq. (3) is over all decisions that
are allowable, or feasible, when the state at stage ¢ is i. In Eq. (1), f;(i) is the minimum cost
and in Eq. (2) the maximum benefit incurred from stage ¢ to the end of the problem, given
that at stage ¢ the state is /.

In deterministic dynamic programming, a specification of the current state and current
decision is enough to tell us with certainty the new state and costs during the current stage.
In many practical problems, these factors may not be known with certainty, even if the
current state and decision are known. When we use dynamic programming to solve
problems in which the current period’s cost or the next period’s state is random, we call
these problems probabilistic dynamic programming problems (PDPs). In a PDP, the
decision-maker’s goal is usually to minimize the expected cost incurred or to maximize the
expected reward earned over a given time horizon.

Many PDPs can be solved using recursions of the following forms. For minimum
problems:

fi(i) = m;’n{(expected cost during stage tfi,a) + %]p(j|i, a, t)ft+1(j)} 4)
and for maximum problems:

(i) = mgx{(expected reward during stage tfi,a) + 2j3p(j|i, a, t)fi1 (J)} (5)
where
i: the state at the beginning of stage t.
a: all actions that are feasible when the state at the beginning of stage ¢ is 7.

p(Jli, a, f): the probability that the next period’s state will be j, given that the current state
is { and action a is chosen.
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OPTIMIZATION OF MULTILEVEL INVESTMENTS 103

In the above formulations, we assume that benefits and costs received during later years
are weighted the same as benefits and costs received during earlier years. But later benefits
and costs should be weighted less than earlier benefits and costs. We can incorporate the
time value of money into the dynamic programming recursion in the following way. For a
maximum problem with neither input nor output fixed,

fu(i) = max{ (‘benefits — costs’ during stage t) + fi11(new state at stage t + 1)}

(6)

1
(I+1)

where r is the time value of money.

In most of the real-world problems, some of the decision data can be precisely assessed
while others cannot. Humans are unsuccessful in making quantitative predictions, whereas
they are comparatively efficient in qualitative forecasting. Furthermore, humans are more
prone to interference from biasing tendencies if they are forced to provide numerical
estimates since the elicitation of numerical estimates forces an individual to operate in a
mode which requires more mental effort than that required for less precise verbal
statements (Karwowski and Mital (1986)). Real numbers are used to represent data which
can be precisely measured. For those data which cannot be precisely assessed, Zadeh’s
(1965) fuzzy sets can be used to denote them. The use of fuzzy set theory allows us to
incorporate unquantifiable information, incomplete information, no obtainable informa-
tion, and partially ignorant facts into the decision model. When decision data are precisely
known, they should not be faced into a fuzzy format in the decision analysis.

Applications of fuzzy sets within the field of decision-making have, for the most part,
consisted of extensions or “fuzzifications” of the classical theories of decision-making.
While decision-making under conditions of risk and uncertainty have been modelled by
probabilistic decision theories and by game theories, fuzzy decision theories attempt to
deal with the vagueness or fuzziness inherent in subjective or imprecise determinations of
preferences, constraints, and goals.

There are many imprecise and uncertain factors due to human’s inherent subjectivity and
vagueness in the articulation of their opinions. For an obvious reason, the analysis of
multi-stage decision-making problems by conventional DP is rather difficult under fuzzy
environments. Assuming that Zadeh’s fuzzy sets theory was an appropriate way to deal
with uncertainties and imprecision in real-world problems, DP was one of the earliest
fundamental methodologies to which fuzzy sets theory was applied (Bellman and Zadeh
(1970)), leading to what might be called fuzzy dynamic programming (FDP). FDP has
received wide attention in many research and application fields during the last ten years.

Many capital budgeting problems allow of a dynamic formulation. There may actually
be several decision points, but even if this is not so if the decision problem can be divided
up into stages than a discrete dynamic expression is possible. Many problems allow of
either static or dynamic expression. The choice of form would be up to the problem solver.
Characteristically, a dynamic economizing model allocates scarce resources between
alternative uses between initial and terminal times. In the case of equal-life multilevel
investments, each investment in the set has the following characteristic: the amount to be
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104 KAHRAMAN, RUAN AND BOZDAG

invested has several possible values, and the rate of return varies with the amount invested.
Each sum that may be invested represents a distinct level of investment, and the investment
therefore has multiple levels. Examples of multilevel investments may be the purchase of
labor-saving equipment where several types of equipment are available and each type has
a unique cost. The level of investment in labor-saving equipment depends on the type of
equipment selected. Another example is the construction and rental of an office building,
where the owner-builder has a choice concerning the number of stories the building is to
contain (Kurtz (1995)).

In the crisp optimization of multilevel investments using dynamic programming, cash
flows are known with certainty. When cash flows cannot be precisely assessed, fuzzy
numbers can be used to denote the estimations about them. Quite often in finance future
cash amounts and interest rates are estimated. One usually employs educated guesses,
based on expected values or other statistical techniques, to obtain future cash flows and
interest rates. Statements like approximately between 3 12,000 and $ 16,000 or approx-
imately between 10% and 15% must be translated into an exact amount, such as $ 714,000
or 12.5% respectively. Appropriate fuzzy numbers can be used to capture the vagueness of
those statements.

In the literature, fuzzy dynamic programming is classified as in Figure 1. The dynamic
programming in this paper is based on a deterministic system under control with crisp
termination time. But it is different from the approaches in Figure 1 because it is only
based on fuzzy interval arithmetics.

This paper is organized as follows. First, the literature review on fuzzy dynamic
programming is given. Then, dynamic programming algorithms based on crisp and fuzzy
cash flows are explained. Finally, a numeric example for dynamic programming based on
fuzzy cash flows is given. In the conclusion section, a comparison between DP based on
crisp and fuzzy cash flows is made.

2. Literature Review

Fuzzy dynamic programming has found many applications to real-world problems: Health
care, flexible manufacturing systems, integrated regional development, transportation net-
works and transportation of hazardous waste, chemical engineering, power and energy
systems, and water resource systems.

Li and Lai (2001) developed a new fuzzy dynamic programming approach to solve
hybrid multiobjective multistage decision-making problems. They presented a method-
ology of fuzzy evaluation and fuzzy optimization for hybrid multiobjective systems, in
which the qualitative and quantitative objectives are synthetically considered. Esogbue
(1999a) presented the essential elements of fuzzy dynamic programming and computa-
tional aspects as well as various key real world applications. Fu and Wang (1999)
established a model in the framework of fuzzy project network by the team approach under
the consideration of uncertain resource demand and the budget limit. The model is
transformed into a classical linear program formula and its results show that the cause-
effect relation of insufficient resources or over due of the project is identified for better
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106 KAHRAMAN, RUAN AND BOZDAG

management. Lai and Li (1999) developed another approach using dynamic programming
to solve the multiple-objective resource allocation problem. There are two key issues being
addressed in the approach. The first one is to develop a methodology of fuzzy evaluation
and fuzzy optimization for multiple-objective systems. The second one is to design a
dynamic optimization algorithm by incorporating the method of fuzzy evaluation and
fuzzy optimization with the conventional dynamic programming technique. Esogbue
(1999b) considered both time and space complexity problems associated with the fuzzy
dynamic programming model. Huang et al (1998) developed a fuzzy dynamic program-
ming approach to solve the direct bad control problem of the air conditioner loads.
Kacprzyk and Esogbue (1996) did survey major developments and applications of fuzzy
dynamic programming, which is advocated as a promising attempt at making dynamic
programming models more realistic by a relaxation of often artificial assumptions of
precision as to the constraints, goals, states and their transitions, termination time, etc. Chin
(1995) proposed an approach using fuzzy dynamic programming to decide the optimal
location and size of compensation shunt capacitors for distribution systems with harmonic
distortion. The problem is formulated as a fuzzy dynamic programming of the minimization
of real power loss and capacitor cost under the constraints of voltage limits and total
harmonic distortion. Hussein and Abo-Sinna (1995) proposed an approach using fuzzy
dynamic programming to solve the multiple criteria resource allocation problems. They
concluded that solutions obtained by the approach are always efficient; hence an “optimal”
compromise solution can be introduced. Berenji (1994) developed an algorithm called
Fuzzy Q-Learning, which extends Watkin’s Q-Learning method. It is used for decision
processes in which the goals and/or the constraints, but not necessarily the system under
control, are fuzzy in nature. He showed that fuzzy Q-Learning provides an alternative
solution simpler than the Bellman-Zadeh’s fuzzy dynamic programming approach.

3. Dynamic Programming Based on Crisp Cash Flows

Newnan (1988) showed that independent proposals competing for funding should be
picked according to their IRR values- monotonically from highest to lowest. Ranking on
present-worth values (computed at a specified MARR) may not give the same results.
Given a specified minimum attractive rate of return (MARR) value, Newnan (1988)
suggested that proposals be ranked on the basis of

Proposal PW(MARR)

Ranking ratio =
& Proposal first cost

(7)

where PW is the present worth of a proposal. The larger ratio indicates the better proposal.

Now assume that cash flows for / independent proposals that have passed a screening
based on an MARR of 7% are given in Table 1 and we have a $L capital limitation. The
problem is which combination of proposals should be funded. The solution consists of the
following steps:
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OPTIMIZATION OF MULTILEVEL INVESTMENTS 107

Table 1. Cash flows for / independent proposals.

End-of-period-cash-flow, $

Proposal Investment, $ Period 1 Period 2 Period 3 e Period n
1 $x CF}, CF}, CFl, . CFl,
$2X CF} CF%, CFl, - CF?,
$3X CF3, CF3, CF3, S CF3
$iX CFY, CF¥, CF%, E CF¥,
2 $X CF} CFlL, CF}, e CF},
$2X CF} CF3, CF3, e CF3,
$3X CF3 CF3, CF3, e CF3,
$ix CFl CF%, CF%, e CF%,
! $X CF} CF}, CF} e CF},
$2X CF} CF} CF}, e CF},
$3X CF} CF}, CF}, e CF;,
$iX CFY CF¥, CF¥ e CF¥,

1. Devise all possible investments that encompass proposals 1 and 2 alone, applying an
upper limit of $Z to the amount invested. Compute the present worth of each proposal
in the possible combinations using the discounted cash flow techniques. $L can be
allocated to proposal 1 alone or to proposal 2 alone or to any other combination.

2. Identify the most lucrative combination of proposals 1 and 2 corresponding to every
possible value of $L, using the ranking ratio in Eq. (7).

3. Devise all possible investments that encompass proposals 1, 2, and 3, and identify the
most lucrative one as in Step 2.

4. Continue increasing the number of proposals in the combination until the number is /
and identify the most lucrative combination.

In Table 1, CF¥, indicates the cash flow of proposal / in period ¢ at the kth level of
investment.
4. Dynamic Programming Based on Fuzzy Cash Flows

Given a fuzzy specified minimum attractive rate of return (MARR) value, proposals can be
ranked on the basis of

Proposal fuzzy PW(MARR)
Proposal fuzzy first cost

(8)

Ranking ratio =

where PW is the present worth of a proposal. The larger ratio indicates the better proposal.
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AY=Tx (x)
1.0
k=1
for k=2 for
LSR RSR
o F--
1 1
1 1
1 1
1 1
/ .
1 1 > x
a+(b-a)a c+(b-c)x
a b

Figure 2. The membership function of a triangular fuzzy number, A= (a,b,c).

It will be explained in the following how the fuzzy PW of a proposal can be calculated and
how fuzzy numbers can be ranked. The extended algebraic operations of a triangular fuzzy
numbers (TFN) can be found in (Kahraman (2001a), (2001b)).

It is necessary to use a ranking method to rank the fuzzy ranking ratios. In Section 4.2,
some ranking methods are given. These methods use the forms of triangular or trapezoidal
fuzzy numbers. The membership function of a 7FN, A= (a,b,c), is shown in Figure 2.
LSR and RSR mean “Left Side Representation” and “Right Side Representation”
respectively. £ = 1 indicates LSR and k£ = 2 indicates RSR.

4.1. Fuzzy Present Worth (PW) Method

The present-worth method of alternative evaluation is very popular because future
expenditures or receipts are transformed into equivalent dollars now. That is, all of the
future cash flows associated with an alternative are converted into present dollars. If the
alternatives have different lives, the alternatives must be compared over the same number
of years.

Chiu and Park (1994) proposed a present worth formulation of a fuzzy cash flow. The
result of the present worth is also a fuzzy number with a non-linear membership function.

max(Fi’, 0) N min(F.), 0) + max (F:, 0) N min(F%, 0)
t=0| .t t =0 .t

T 1 1 t T
A+ T1a+6Y) I+ 10 +6Y)
=0 t'=0 t'=0 t'=0

©)
where Fi(y): the left representation of the cash at time ¢, F:(y): the right representation of the

cash at time #,7”): the left representation of the interest rate at time ¢,7.”): the right
representation of the interest rate at time 7.
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Buckley’s (1987) membership function for PW,,
(x’PWn) = (anlyfnl(y’PWn)/an2aan2/fn2(y PW,.), PWn3) (10)
is determined by
b (y[PW) = ([P (1 + f(y] ) (1)

for i = 1, 2 where £ = i for negative Fand k=3 —for positive F.
Ward (1985) gave the fuzzy present worth function as

PW = (1+7r)"(a,b,c,d) (12)

where (a, b, ¢, d) is a flat fuzzy filter function (4F) number.

Kahraman et al (2000) and Kahraman (2001b) applied fuzzy present worth and fuzzy
benefit/cost ratio analyses for the justification of manufacturing technologies and for public
work projects. Karsak (1998) developed some measures of liquidity risk supplementing
fuzzy discounted cash flow analysis. Boussabaine and Elhag (1999) examined the possible
application of the fuzzy set theory to the cash flow analysis in construction projects.
Dimitrovski and Matos (2000) presented an approach to including nonstatistical uncer-
tainties in utility economic analysis by modeling uncertain variables with fuzzy numbers.
Kuchta (2000) proposed fuzzy equivalents of all the classical capital budgeting methods.

When the value of a given cash flow differs from that of the previous cash flow by a
constant percentage, j%, then the series is referred to as a geometric series. The present
value of a crisp geometric series is given by

F; 1+g\°
PW = 21?1(1+g)t 144" 1+gt21<1—|—i> (13)

where F is the first cash at the end of the first year. When this sum is made, the following
present value equation is obtained:

1-(14+g)" (14+i)~ .
PW = Fy %7g’ i#g (14)
nF; D
1+i? 1=g

In the case of fuzziness, the parameters used in Eq. (14) will be assumed to be fuzzy

numbers, except project life. Let y(i,g,n) = M, i #+ g. As it is in Figure 2,

when k£ = 1, the left side representation will be deplcted and when k& = 2, the right side
representation will be depicted. In this case, for i # g

far( y’PWn) =fi y’F1 (fik( YI f3_i(y|€),n). (15)
In Eq. (15), the least possible value is calculated for k£ = 1 and y = 0; the largest possible

value is calculated for £ = 2 and y = 0; the most promising value is calculated for £k = 1 or
k=2 and y = 1 (Kahraman (2001a)).

Reproduced with permission of the copyright:-owner. Further reproduction prohibited without permissionyyanny.manaraa.com



110 KAHRAMAN, RUAN AND BOZDAG

4.2. Ranking Fuzzy Numbers

It is now necessary to use a ranking method to rank the TFNs such as Jain’s (1976)
method, Yager’s (1980) method, Chang’s (1981) method, Dubois and Prade’s (1983)
method, Kaufmann and Gupta’s (1988) method, and Chiu and Park’s (1994). For the
ranking method of fuzzy variables, the main one is to employ expected value. The most
general definition of expected value of a fuzzy variable and fuzzy expected value models
are given by Liu and Liu (2002) and Liu (2002). These methods may give different
ranking results and most methods are tedious in graphic manipulation requiring some
complex mathematical calculation. In the following, three of the methods, which do not
require graphical representations, are given.

Kaufmann and Gupta (1988) suggested three criteria for ranking 7FNs with parameters
(a, b, ¢). The dominance sequence is determined according to priority of:

1. Comparing the ordinary number (¢ + 26 + ¢)/4
2. Comparing the mode, (the corresponding most promise value), b, of each TFN.
3. Comparing the range, c—a, of each TFN.

The preference of projects is determined by the amount of their ordinary numbers. The
project with the larger ordinary number is preferred. If the ordinary numbers are equal, the
project with the larger corresponding most promising value is preferred. If projects have
the same ordinary number and most promising value, the project with the larger range is
preferred.

Liou and Wang (1992) proposed the total integral value method with an index of
optimism o € [0, 1]. Let 4 be a fuzzy number with a left membership function ]}L and a
right membership function ]:TR. Then the total integral value is defined as:

Ey(d) = wEg(4) + (1 — w)E(4) (16)
where

ER(IZ) = fx;(x)dx (17)

E () = fx;(x)dx (18)

where —c0 <a<f<y<o<+ oo and a trapezoidal fuzzy number is denoted by (c, 3,7, 9).
For a triangular fuzzy number, 4 = (a, b, c),

~ 1
E,(4) ZE[w(a+b)+(l—w)(b+c)] (19)
and for a trapezoidal fuzzy number, B = (o, 8,7, ),

Eu(B) =3[0y + ) + (1 0)(a + 4] (20)
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Figure 3. The form of fuzzy ranking methods.

Chiu and Park’s (1994) weighted method for ranking 7FNs with parameters (@, b, ¢) is
formulated as

((a+b+c)/3)+wb

where w is a value determined by the nature and the magnitude of the most promising value.
The preference of projects is determined by the magnitude of this sum.

The computer software developed by the authors, FUZDYN, has the ability to use many
ranking methods which are tedious in graphic manipulation requiring some complex
mathematical calculation. To select the ranking method required by the decision maker, the
following form in Figure 3 is used:

4.3. Selection Among Equal-Life Multilevel Investments When Fuzzy Cash Flows
Are Known

Now assume that cash flows for / independent proposals that have passed a screening
based on an MARR of #% are given in Table 2 and we have a $L capital limitation. In
Table 2, CF f,“ , indicates the fuzzy cash flow of proposal / in period ¢ at the £ th level of
investment. The problem is which combination of proposals should be funded. The
solution consists of the following steps:

1. Devise all possible investments that encompass proposals 1 and 2 alone, applying an
upper limit of $L to the fuzzy amount invested. Compute the fuzzy present worth of
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112 KAHRAMAN, RUAN AND BOZDAG

Table 2. Fuzzy cash flows for / independent proposals.

End-of-period-cash-flow, $

Proposal Investment, $ Period 1 Period 2 Period 3 e Period n
1 $ X CF1, CFl, CF\, e CF!.
2X$ CF%, CF, CFZ, - CF3,
I3 P, cF, R, CF,
2 $ X Cljél CE%Z C§%3 - CI:"%"
2X$ CF%, CF%, CF, - CF3,
EX$ CF%, CF%, CF%, CF%,
1 $ X CF}, CF}, CF CF},
2X$ CF3, CF3, CF3, CF?,
EX$ CF% CF%, CF¥% e CF*,

each proposal in the possible combinations using the fuzzy discounted cash flow
techniques (Kahraman et al (2002)). $L can be allocated to proposal 1 alone or to
proposal 2 alone or to any other combination.

2. Identify the most lucrative combination of proposals 1 and 2 corresponding to every
possible value of $L, using the ranking ratio in Eq. (8). Use a ranking method of fuzzy
numbers to identify the most lucrative combination.

3. Devise all possible investments that encompass proposals 1, 2, and 3, and identify the
most lucrative one as in Step 2. Use a ranking method of fuzzy numbers to identify the
most lucrative combination.

4. Continue increasing the number of proposals in the combination until the number is /
and identify the most lucrative combination. Use a ranking method of fuzzy numbers to
identify the most lucrative combination.

4.4. A Numerical Example

A firm has $(15000, 21000, 27000) available for investment, and three investment
proposals are under consideration. Each proposal has these features: the amount that
can be invested is a multiple of $(5000, 7000, 9000); the investors receive annual unequal
receipts; each proposal has a useful life of three years. Table 3 lists the annual geometric
receipts corresponding to the various fuzzy levels of investment. Devise the most lucrative
composite investment using fuzzy dynamic programming. The company-specified MARR
value 7% is (5%, 6%, 7%) per year.

In FUZDYN, the project definition is as in Figure 4.

As it can be seen from Table 3, the geometric growth rates (g) for the annual receipts at
the investment levels are 10%, 12%, and 14% respectively and they are given as crisp
rates in the problem. Using Eq. (15), fi (¥|7) = 0.05 + 0.01y, £(|¥) =0.07—0.01y,y
(f3—k()”7)»g9 n)vk =1,2.
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Table 3. Fuzzy cash flows for three independent proposals.

Proposal Investment, $ Year 1 Year 2 Year 3

1 $(5000, 7000, 9000) (3000, 4000, 5000) (3300, 4400, 5500) (3630, 4840, 6050)
$(10000, 14000, 18000) (5000, 6000, 7000) (5600, 6720, 7840) (6272, 7526, 8780)
$(15000, 21000, 27000) (3000, 9000, 10000) (9120, 10260, 11400) (10396, 11696, 12996)

2 $(5000, 7000, 9000) (3000, 4000, 6000) (3300, 4400, 6600) (3630, 4840, 7392)
$(10000, 14000, 18000) (4000, 6000, 7000) (4480, 6720, 7840) (5017, 7526, 8780)
$(15000, 21000, 27000) (5000, 9000, 10000) (5700, 10260, 11400) (6498, 11696, 12996)

3 $(5000, 7000, 9000) (3000, 3000, 4000) (3300, 3300, 4400) (3630, 3630, 4840)
$(10000, 14000, 18000) (5000, 7000, 7000) (5600, 7840, 7840) (6272, 7526, 7526)
$(15000, 21000, 27000) (3000, 9000, 12000) (9120, 10260, 13680) (10396, 11696, 15595)

In FUZDYN, data input for proposals is shown in Figure 5. In Figure 6a, the data
regarding fuzzy investment cost, fuzzy growth rate, and the benefit of the first year are
entered and in Figure 6b, it is shown how a fuzzy number is entered.

For the total investment of $(15000, 21000, 27000) in proposals 1 and 2:

Investment in proposal 1: $ (15000, 21000, 27000) and proposal 2: $ 0
We find fi (y|F1) = 1000y + 8000, f(y|F1) = 10000 — 1000 .

(1.14)*(1.07 = 0.01y) > — 1
0.07 +0.01y

For k = 1,5, (y|PW) = (1000y + 8000)

]and for y =0,

f371(y’PW) —$ 23,929 and for y :1,f371(y’PW): $ 27,442, For k = 2,3, (y’PW) -

1—(1.14)*(1.05 + 0.01y) ™

0.01y — 0.09

(10000 — 1000y)l ]and for y = 0,f3, (y’PW) = $31,090.

Figure 4. Project definition.
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Figure 6. The forms related to data input for proposals.

Now we can calculate the net PW and the fuzzy ranking ratio:

NPW, = $(23,929;27,442; 31,090) — $(15,000;21,000; 27,000)
= $(—3,071; +6,442; +16,090)
$(—3,071;46,442; +16,090)

Ranking rafio —
anking Tatio = =75 500; 21,000; 27,000)

= (—0.114; 4+0,307; +1,073)

Investment in proposal 1: $ (10000, 14000, 18000) and proposal 2: $ (5000, 7000, 9000)
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For proposal 1:
£i(¥|F1) = 1000 y + 5000, f£;(y|F1) = 7000 — 1000 y.

(1.12)*(1.07 — 0.01y) > — 1
0.05+0.01y

For k = 1,51 (y|PW) = (1000y + 5000) l and for y = 0,

£31(y[PW) = $ 14,684 and for y = 1,f3; (y|PW) = $ 17,960. For k = 2,f;,(y[PW) =

1—(1.12)*(1.05 + 0.01y)
0.01y — 0.07

(7000 — 1000y) ] and for y = 0, f3, (y|PW) = $ 21,363.

For proposal 2:
fl(y]ﬁl) = 1000 y + 3000, fz(y]ﬁl) = 6000 — 2000 y

(1.10)*(1.07 — 0.01y) > — 1
0.03 + 0.0y

For k = 1,f3; (yIPW) = (1000y + 3000) l and for y = 0,

£31(y|[PW) = $ 8,649 and for y = 1,f3; (y|PW) = $ 11,753. For k = 2,3, (y|PW) =

— (1.10)*(1.05 + 0.01y)
0.0ly — 0.05

1 ~
(6000 — 2000 y) ] and for y=0, 3, (y[PW) = $17,972.

Now we can calculate the net PW and the fuzzy ranking ratio:
PWLQ =PW, +PW, = $(14,684; 17,690;21,393) + $(8,649; 11,753, 17,972)
= $(23,333;29,443; 39,365)

NPW,, = $(23,333;29,443; 39,365) — $(15,000; 21,000; 27,000)
= $(—3,667; +8,443; +-24,365)

$(—3,667; +8,443; +24,365)

Ranki 0 =
anking ratio $(15,000;21,000;27,000)

= (—0.136; 4+0.402; +1.624)

Investment in proposal 1: $ (5000, 7000, 9000) and proposal 2: $ (10000, 14000, 18000)
For proposal 1:
£i(¥|F1) = 1000 y + 3000, f(y|F;) = 5000 — 1000 y.

(1.10)*(1.07 — 0.01y) > — 1

For k = 1,f5, (y|PW) = (1000y + 3000) 0.03 + 0.01y

and for y = 0,
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£31(y|[PW) = $ 8,649 and for y = 1, f3; (y|PW) = $ 11,753. For k = 2, f;,(y[PW) =

— (1.10)*(1.05 + 0.01y)
0.0ly — 0.05

1 -
(5000 — 1000 y) ]and for y = 0,f;,(y[PW) = § 14,977.

For proposal 2:
fi(y|F1) = 2000 y + 4000, f(y|F1) = 7000 — 1000 y

(1.12)*(1.07 = 0.01y) > — 1

dfory=0
0.05 + 0.01y andlory ==

For k = 1,51 (y|PW) = (2000y -+ 4000) l

£31(y|[PW) = $ 11,747 and for y = 1,51 (y[PW) = $ 17,960. For k = 2,f;,(y[PW) =

1 — (1.12)*(1.05 + 0.01y) >

(7000 — 1000y) 0.0ly —0.07

]and for y = 0,3, (y[PW) = $ 21,363.
Now we can calculate the net PW and the fuzzy ranking ratio:
PWM =PW, + PW, = $(8,649; 11,753; 14,977) + $(11,747;17,960; 21,363)
= $(20,396;29,713;36,340)
N13W172 = $(20,396;29,713; 36,340) — $(15,000;21,000;27,000)

= $(—6,604; +8,713; +21,340)

$(—6,604; +8,713; 4+21,340)
$(15,000;21,000;27,000)

Ranking ratio = = (—0.025;+0.415; +1.423)

Investment in proposal 1: $ 0 and proposal 2: $ (15000, 21000, 27000)
We find f; (| F1) = 4000 y + 5000, £ (y|F1) = 10000 — 1000 y.

(1.14)*(1.07 = 0.01y) > — 1

for y = 0
0.07 +0.01y and for y =0,

For k = 1,31 (y|PW) = (4000y + 5000) l

f31(y[PW) = $ 14,956 and for y = 1,31 (y|PW) = § 27,442. For k = 2,f3,(y|PW) =

— (1.14)°(1.05 +0.01y) >
0.01y — 0.09

1 -
(10000 — 1000y) ]and for y = 0,f3,(y[PW) = $ 31,090.

Now we can calculate the net PW and the fuzzy ranking ratio:
NPW, = $(14,956;27,442;31,090) — $(15,000;21,000; 27,000)

= $(—12,044; +6,442; +16,090)
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Table 4. Identifying the most lucrative combination of $ (15,000; 21,000
27,000) for the First Stage.

Ranking ratio, 4 E,(d) = %[w(a +B)+ (1 — w)(b+¢)]
(—0.114; 4+0.307; +1.073) 0.393
(—0.136; +0.402; +1.624) 0.573*
(—0.025; +0.415; +1.423) 0.557
(—0.446; +-0.307; 4+-1.073) 0.310

$(—12,044; +6,442; +16,090)

Ranking ratio =
anking ratio $(15,()()();21,000; 277000)

= (—0.446; +0,307; +1,073)

To select the most lucrative combination of an investment of $ (15,000; 21,000,
27,000), we will use Liou and Wang’s (1992) method. For a moderately optimistic
decision-maker, @ = 0.5.

As it can be seen from Table 4, the most lucrative combination is to invest $ (10,000,
14,000; 18,000) in proposal 1 and invest $ (5,000; 7,000; 9,000) in proposal 2.

For the total investment of § (10000, 14000, 18000) in proposals 1 and 2:

Investment in proposal 1: (10000, 14000, 18000) and proposal 2: $ 0

$(—3,316;4+3,960; +11,363)
$(10,000; 14,000; 18,000)

Ranking ratio = = (—0.184;+0.283; +1.136)

Investment in proposal 1: $ (5000, 7000, 9000) and proposal 2: $ (5000, 7000, 9000)

$(—702; +9,506; +22,949)

Ranki [0 =
anking ratio $(10,000; 14,000; 18,000)

= (—0.039; +0.679; +2.295)

Investment in proposal 1: 0 $ and proposal 2: $§ (10000, 14000, 18000)

$(—6,253;43,960; +11,363)
$(10,000; 14,000; 18,000)

Ranking ratio = = (—0.347;+0.283; +1.136)

To select the most lucrative combination of an investment of $ (10,000; 14,000; 18,000),
we will again use Liou and Wang’s (1992) method. For a moderately optimistic decision-
maker, « = 0.5.

As it can be seen from Table 5, the most lucrative combination is to invest $ (5,000,
7,000; 9,000) in proposal 1 and invest $ (5,000; 7,000; 9,000) in proposal 2.

For the total investment of § (5000, 7000, 9000) in proposals 1 and 2:
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Table 5. Identifying the most lucrative combination of $ (10,000; 14,000
18,000) for the Second Stage.

Ranking ratio, 4 E,(d) = %[w(a +B)+ (1 — w)(b+¢)]
(—0.184; +0.282; +1.136) 0.379
(—0.039; 4-0.679; 4-2.295) 0.904*
(—0.347; 4-0.283; 4-1.136) 0.339

Table 6. Identifying the most lucrative combination of $ (15,000; 21,000
27,000) for the Last Stage.

Ranking ratio, 4 E,(d) = %[co(a +b) + (1 — w)(b+¢)]
(—0.136; +0.402; +1.624) 0.573
(—0.039; 4+0.539; +1.995) 0.759*
(—0.136; +0.557; +1.622) 0.650
(—0.114; +0.307; 4+0.687) 0.328

Investment in proposal 1: $ (5000, 7000, 9000) and proposal 2: § 0

$(—351;+4,753; +9,977)
$(5,000; 7,000; 9,000)

Ranking ratio = = (—0.039; +0.679; +1.995)

Investment in proposal 1: 0 and proposal 2: $ (5000, 7000, 9000)

$(—351; 44,753, +12,972)
$(5,000; 7,000; 9,000)

Ranking ratio = = (—0.039; +0.679; +2.594)

It is obvious that the most lucrative combination of an investment of $ (5,000; 7,000,
9,000) is to invest $ (5,000; 7,000; 9,000) in proposal 2.

Now we will devise all possible investments that encompass proposals 1, 2, and 3, and
identify the most lucrative one.

* Investment in proposals 1 + 2: $ (15000, 21000, 27000) and proposal 3: § 0

$(—3,667; +8,443; +24,365)
$(15,000; 21,000; 27,000)

Ranking ratio = = (—0.136; +0.402; +1.624)

¢ TInvestment in proposals 1 + 2: $ (10000, 14000, 18000) and proposal 3: $ (5000, 7000,
9000)

$(—1,053;+11,321; 4+29,930)
$(15,000;21,000; 27,000)

Ranking ratio = = (—0.039; +0.539; +1.995)
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3

Figure 7. Final solution.

¢ Investment in proposals 1 + 2: $ (5000, 7000, 9000) and proposal 3: $ (10000, 14000,
18000)

$(—3,667;+11,707; +24,335)
$(15,000;21,000; 27,000)

Ranking ratio = = (—0.136;+0.557; +1.622)

¢ TInvestment in proposals 1 + 2: $ 0 and proposal 3: $ (15000, 21000, 27000)

$(—3,071; +6,442; +10,308)
$(15,000; 21,000; 27,000)

Ranking ratio = = (—0.114; +0.307; +0.687)

To select the most lucrative combination of an investment of $ (15,000; 21,000; 27,000),
we will again use Liou and Wang’s (1992) method. For a moderately optimistic decision-
maker, w = 0.5.

As it can be seen from Table 6, the most lucrative combination is to invest $ (10,000,
14,000; 18,000) in proposal 1 and proposal 2 and invest $ (5,000; 7,000; 9,000) in
proposal 3. Then the final solution is to invest $ (5000, 7000, 9000) in proposal 1 and
$ (5000, 7000, 9000) in proposal 2, and $ (5,000; 7,000; 9,000) in proposal 3.

The final solution found by FUZDYN is given in Figure 7:

When the problem is solved in the crisp case, at the end of the first stage, the largest
ranking ratio will be 0.415 and the most lucrative combination is to invest $ 7000 in
proposal 1 and $ 14000 in proposal 2. At the end of the second stage, the largest ranking
ratio will again be 0.679 and the most lucrative combination is to invest $ 7000 in proposal

Table 7. The ranking ratios for the last stage in the crisp case.

Combination No Investment Ranking ratios
1 $ 21000 in proposal 1 + 2 and $ 0 in proposal 3 0415
2 $ 14000 in proposal 1 4+ 2 and $ 7000 in proposal 3 0.539
3 $ 7000 in proposal 1, $ 0 in proposal 2 and $ 14000 in proposal 3 0.557
4 $ 7000 in proposal 2, $ 0 in proposal 0 and $ 14000 in proposal 3 0.557
5 $ 0 in proposal 1 4+ 2 and $ 21000 in proposal 3 0.307
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1 and $ 7000 in proposal 2. At the end of the third stage, the largest ranking ratios are the
same for both proposals and the decision-maker is free to select any of the proposals. The
ranking ratios and combinations for the last stage are given in Table 7.

The most lucrative one is either of third or fourth combinations. Because the ranking
method takes care of the least and the largest possible values, the proposals selected in the
fuzzy case are different the ones in the crisp case.

5. Conclusions

Dynamic programming is a powerful optimization technique that is particularly applicable
to many complex problems requiring a sequence of interrelated decisions. In this paper, we
presented a fuzzy dynamic programming application for the selection of independent
multilevel investments. This method should be used when imprecise or fuzzy input data or
parameters exist. In multilevel mathematical programming, input data or parameters are
often imprecise or fuzzy in a wide variety of hierarchical optimization problems such as
defense problems, transportation network designs, economical analysis, financial control,
energy planning, government regulation, equipment scheduling, organizational manage-
ment, quality assurance, conflict resolution and so on. Developing methodologies and new
concepts for solving fuzzy and possibilistic multilevel programming problems is a
practical and interesting direction for future studies.

Notes

1. Corresponding author. Tel.: +90-212-293 13 00 ext. 2073, Fax: +90-212-240 72 60.
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